Matter & Energy: The Structure of Matter & Chemical Bonds

EVPP 110 Lecture GMU Dr. Largen

- ² Sections
 - ✓ Atoms & molecules
 - ✓ Properties of Water
 - √Rearrangements of Atoms
- 3 ☐ Atoms and Molecules
- 4 Atoms & Molecules Biological function starts at chemical level
 - ✓ reductionist approach
 - scientific approach
 - » whole best understood by studying parts
- 5 Atoms & Molecules Biological function starts at the chemical level
 - ✓ to understand chemical structure and function
 - start small
 - structures at each level are combined into each higher level
 - note the hierarchical aspect of this idea
- 6 Atoms & Molecules Biological function starts at the chemical level
 - ✓ matter in all living things

structure and function	
interrelated at every level	
7 🗖 Atoms & Molecules -	
Biological function starts at the chemical level	
✓ example	
 certain atoms come together to form complex molecule chlorophyll 	
 many chlorophyll molecules are located in organelles called chloroplas 	
 many chloroplasts are located in cells of photosynthetic tissues in stru 	ctures
(organs) such as leaves of plants	
Figure 2.1 The hierarchy of biological order from atom to organism (<i>Biology</i> , 6th Ed., Campbell & Reece)	
9 🗖 Atoms & Molecules -	
Life requires about 25 chemical elements	
✓life is composed of matter	
✓ matter is composed of chemical elements	
10 Atoms & Molecules - Life requires about 25 chemical elements	
Life requires about 25 chemical elements	
✓ Matter	
- matter	
• mass – amount of a substance	
_	
_	
 weight – force gravity exerts on substance 	
_	
_	
11 🗖 Atoms & Molecules -	
Life requires about 25 chemical elements	
✓ Matter	

- made up of chemicals

- three states (phases) on earth

• gas

	• liquid
	• solid
12 🗖	Atoms & Molecules -
	Life requires about 25 chemical elements
	·
	Mottor
	✓ Matter
	– gas
	•
	– liquid
	– solid
13 🗖	Atoms & Molecules -
	Life requires about 25 chemical elements
	•
	√ Matter
	– gas
	– liquid
	•
	– solid
	Solid
14 🗐	Atoms & Molecules -
	Life requires about 25 chemical elements
	Eno roquiros about 25 onomical cicinomo
	714 vi
	✓ Matter
	– gas
	– liquid
	– solid
	•
15 🗐	Atoms & Molecules -
٠,٠	Life requires about 25 chemical elements
	and required about 20 one mountains
	A Long Collaboration
	√ chemical element
	 substance which cannot be broken down into any other substance
	•
	 each element consists of one type of atom

	•
16 🗖	Atoms & Molecules - Life requires about 25 chemical elements
	✓ naturally occurring elements – 92 naturally occurring
	✓ man-made elements – additional 12 - 17 man-made elements
	• •
17 🗖	Atoms & Molecules - Life requires about 25 chemical elements
	 ✓ distribution of elements (non-living vs. living) – in crust of earth (non-living) • 9 elements constitute ~99% (by mass) of earth's crust –
18 🗖	Atoms & Molecules - Life requires about 25 chemical elements
	 ✓ distribution of elements (non-living vs. living) in living organisms of 92 naturally occurring elements ~ 25 are essential to life » 14 of which are found in organisms in any more than trace (>0.01%) amounts » trace elements
19 🗖	Atoms & Molecules - Life requires about 25 chemical elements
	✓ of 25 elements essential to life - 11 are found in > than trace amounts • 4 make up ~96% of human body - C - H - O

	• 7 make up remaining ~4% of human body
	- Ca, P, K, S, Na, Cl,Mg
	Table 2.1 Naturally Occurring Elements in the Human Body (Biology, 6th Ed., Campbell & Reece)
21 🗖	Atoms & Molecules - Life requires about 25 chemical elements
	Life requires about 25 chemical elements
	✓ Each element has a symbol
	-
	•
	• examples
	– gold (Au) - from Latin word aurum– oxygen (O) - from English word oxygen
	- oxygen (O) - nom English word oxygen
22 🗖	Atoms & Molecules -
	Elements can combine to form compounds
	✓Elements combine to form molecules and compounds
	– element
	– molecule
	- compound
23	Atoms & Molecules - Flements can combine to form compounds
23	Atoms & Molecules - Elements can combine to form compounds
23 🗀	
23	Elements can combine to form compounds
23	Elements can combine to form compounds
23	✓ element —
23 🗖	✓ element —
23 🗖	 ✓ element – – can't be broken down • – atoms with same atomic number •
23 🗖	 ✓ element — — can't be broken down — atoms with same atomic number ✓ molecule
	<pre> Flements can combine to form compounds ✓ element — — can't be broken down — atoms with same atomic number — w ✓ molecule ✓ compound ✓ compound ✓ molecule ✓ compound</pre>
	 ✓ element — — can't be broken down — atoms with same atomic number ✓ molecule
	<pre>Flements can combine to form compounds ✓ element — — can't be broken down — — atoms with same atomic number — ✓ molecule ✓ compound Atoms & Molecules -</pre>
	<pre>Flements can combine to form compounds ✓ element — — can't be broken down — — atoms with same atomic number — ✓ molecule ✓ compound Atoms & Molecules -</pre>
	 ✓ element — can't be broken down — atoms with same atomic number ✓ molecule ✓ compound Atoms & Molecules - Elements can combine to form compounds
	<pre> ✓element -</pre>
	<pre></pre>
	<pre>Elements can combine to form compounds ✓ element — can't be broken down • atoms with same atomic number • ✓ molecule ✓ compound Atoms & Molecules - Elements can combine to form compounds ✓ element ✓ molecule — group of atoms of same type held together</pre>

	√ compound
25 🗖	Atoms & Molecules -
	Elements can combine to form compounds
	✓ element
	✓ molecule
	√compound
	 molecule containing atoms of 2 or more elements combined in a fixed ratio
	example
	• water
	- H ₂ O
26 🗐	Atoms & Molecules -
20 👅	Elements can combine to form compounds
	·
	✓ Compounds
	- more common than pure elements
	•
	example., table salt (NaCl)
	in living organisms
	 contain at least 3 or 4 different elements
	– mainly C, H, O, N
27 🗷	Figure 2.2 The emergent properties of a compound (Biology, 6th Ed., Campbell & Reece)
	Atoms & Molecules -
	Elements can combine to form compounds
	√ Compounds
	 described by combination of symbols and numerals
	• chemical formula (or molecular formula)
	structural formula
29 🗖	Atoms & Molecules -
	Elements can combine to form compounds
	√ chemical formula or molecular formula
	 consists of chemical symbols and numbers
	•
	•
	– example
	 chemical formula for water is H₂O

	•
30 🗖	Atoms & Molecules - Elements can combine to form compounds
	✓ structural formula
	 shows arrangement of atoms
	•
	– example
	 structural formula for water is H-O-H
31 🗖	Atoms & Molecules -
	Atoms consist of protons, neutrons and electrons
	✓ Each element consists of one kind of atom
	-
	- "atom" from Greek word meaning "indivisible"
	 atom is smallest unit of matter
🗀	_
32	Atoms & Molecules -
	Atoms consist of protons, neutrons and electrons
	✓ atoms– composed of many types of subatomic particles
	– composed of many types of subatomic particles – nucleus contains
	• protons
	• neutrons
	- electrons orbit nucleus
	others particles
	discussed primarily by physicists
33 🗷	, , , , ,
_	
34	Web/CD Activity 2B:
	Structure of the Atomic Nucleus
35 🗖	Atoms & Molecules -
	Atoms consist of protons, neutrons and electrons
	✓ protons (p)
	- type of charge =
	– where found =
	– relative mass =
36 🗷	
37 🗖	Atoms & Molecules -
_	Atoms consist of protons, neutrons and electrons
	√neutrons (n)
	- type of charge =
	- where found =

	- relative mass =
38 🗷	
39 🗖	Atoms & Molecules - Atoms consist of protons, neutrons and electrons ✓ electrons (e) - type of charge = - relative mass = - where found =
40 조	
_	Atoms & Molecules - Atoms consist of protons, neutrons and electrons ✓ Electron orbitals can be – various shapes • •
	✓ electrons orbit nucleus
	•
	•
42 🗖	Atoms & Molecules -
	Atoms consist of protons, neutrons and electrons ✓ Electron orbitals
	arrangement of electrons in their orbits
	 is key to chemical behavior of atom
	 will return to this point shortly
43	Atoms & Molecules -
	Atoms consist of protons, neutrons and electrons ✓ All atoms of a particular element
	have same unique number of protons
	known as the element's
	atomic number
	» number of protons in atom's nucleus
	» top number in box for element in periodic table
44 🗷	
45 🗖	Atoms & Molecules - Atoms consist of protons, neutrons and electrons
	✓ atom's atomic mass (also called atomic weight or mass number)
	– equal to sum of masses of atom's protons & neutrons
	measured in daltons
	-

46 🗷	
47 🗖	Atoms & Molecules -
	Atoms consist of protons, neutrons and electrons
	✓ isotopes
	 atoms of same element that vary in neutron number and atomic mass
	instance of earlier
	 isotopes of carbon carbon ¹²C
	- Carbon 0
	• carbon ¹³ C
	• carbon ¹⁴ C
48	Atoms & Molecules -
٠٠ ـــ	Atoms consist of protons, neutrons and electrons
	✓ Isotopes can be
	- stable
	nuclei remain permanently intact
	-
	- unstable (or radioactive)
	 nuclei decays spontaneously, giving off particles and energy
	_
49 🗀	Atoms & Molecules -
	Atoms consist of protons, neutrons and electrons
	✓ Isotopes can be
	- unstable (or radioactive)
	nucleus tends to break up into elements with lower atomic numbers
	 emits significant amount of energy, called radioactive decay
	» radioactive isotopes
E0 (=)	»
50	Atoms & Molecules - Radioactive isotopes can help us or harm us
	✓ Radioactive isotopes can be
	 harmful to life
	•
	•
	•
	•
51 🗖	Atoms & Molecules -
	Radioactive isotopes can help us or harm us

• bottom number in box for element in periodic table

	 beneficial uses
	•
	•
	•
	•
C	
52	Atoms & Molecules -
	Electron arrangement determines the chemical properties of an atom
	✓ Electrons
	 orbit nucleus of atom
	 arrangement in orbits is key to chemical behavior of atom
	 vary in amount of energy they possess
_	 farther nucleus, greater its energy
53 🚾	Figure 2.9 Energy levels of an atom's electrons (Biology, 6th Ed., Campbell & Reece)
54	Atoms & Molecules -
	Electron arrangement determines the chemical properties of an atom
	✓ electrons are far from nucleus
	– analogy:
	- result
	•
	•
	•
–	Atomo 9 Malagulas
55 🗖	Atoms & Molecules -
55 🗖	Electron arrangement determines the chemical properties of an atom
55 🗖	Electron arrangement determines the chemical properties of an atom ✓ electrons in atom occur only at certain energy levels
55 🗖	Electron arrangement determines the chemical properties of an atom ✓ electrons in atom occur only at certain energy levels – called electron shells (or electron energy levels)
55 🗖	Electron arrangement determines the chemical properties of an atom ✓ electrons in atom occur only at certain energy levels
55 🗖	Electron arrangement determines the chemical properties of an atom ✓ electrons in atom occur only at certain energy levels – called electron shells (or electron energy levels)
55 🗖	Electron arrangement determines the chemical properties of an atom ✓ electrons in atom occur only at certain energy levels – called electron shells (or electron energy levels)
55 🗖	Electron arrangement determines the chemical properties of an atom ✓ electrons in atom occur only at certain energy levels – called electron shells (or electron energy levels)
55 🗖	Electron arrangement determines the chemical properties of an atom ✓ electrons in atom occur only at certain energy levels – called electron shells (or electron energy levels)
	Electron arrangement determines the chemical properties of an atom ✓ electrons in atom occur only at certain energy levels – called electron shells (or electron energy levels) ✓ atoms may have 1, 2 or more electron shells – –
	Electron arrangement determines the chemical properties of an atom ✓ electrons in atom occur only at certain energy levels – called electron shells (or electron energy levels) ✓ atoms may have 1, 2 or more electron shells – – Atoms & Molecules -
	Electron arrangement determines the chemical properties of an atom ✓ electrons in atom occur only at certain energy levels — called electron shells (or electron energy levels) ✓ atoms may have 1, 2 or more electron shells — — Atoms & Molecules - Electron arrangement determines the chemical properties of an atom
	Electron arrangement determines the chemical properties of an atom ✓ electrons in atom occur only at certain energy levels — called electron shells (or electron energy levels) ✓ atoms may have 1, 2 or more electron shells — — Atoms & Molecules - Electron arrangement determines the chemical properties of an atom ✓ first four electron energy shells
	Electron arrangement determines the chemical properties of an atom ✓ electrons in atom occur only at certain energy levels — called electron shells (or electron energy levels) ✓ atoms may have 1, 2 or more electron shells — — Atoms & Molecules - Electron arrangement determines the chemical properties of an atom ✓ first four electron energy shells — covers most biologically significant elements
	Electron arrangement determines the chemical properties of an atom ✓ electrons in atom occur only at certain energy levels — called electron shells (or electron energy levels) ✓ atoms may have 1, 2 or more electron shells — — Atoms & Molecules - Electron arrangement determines the chemical properties of an atom ✓ first four electron energy shells — covers most biologically significant elements — first, innermost energy shell
	Electron arrangement determines the chemical properties of an atom ✓ electrons in atom occur only at certain energy levels — called electron shells (or electron energy levels) ✓ atoms may have 1, 2 or more electron shells — — Atoms & Molecules - Electron arrangement determines the chemical properties of an atom ✓ first four electron energy shells — covers most biologically significant elements
	Electron arrangement determines the chemical properties of an atom ✓ electrons in atom occur only at certain energy levels — called electron shells (or electron energy levels) ✓ atoms may have 1, 2 or more electron shells — — Atoms & Molecules - Electron arrangement determines the chemical properties of an atom ✓ first four electron energy shells — covers most biologically significant elements — first, innermost energy shell • can accommodate only 2 electrons •
	Electron arrangement determines the chemical properties of an atom ✓ electrons in atom occur only at certain energy levels — called electron shells (or electron energy levels) ✓ atoms may have 1, 2 or more electron shells — — Atoms & Molecules - Electron arrangement determines the chemical properties of an atom ✓ first four electron energy shells — covers most biologically significant elements — first, innermost energy shell • can accommodate only 2 electrons • — second, third, fourth energy shells
	Electron arrangement determines the chemical properties of an atom ✓ electrons in atom occur only at certain energy levels — called electron shells (or electron energy levels) ✓ atoms may have 1, 2 or more electron shells — — Atoms & Molecules - Electron arrangement determines the chemical properties of an atom ✓ first four electron energy shells — covers most biologically significant elements — first, innermost energy shell • can accommodate only 2 electrons •

√ Radioactive isotopes can have

57 🗷	
58 🗖	Atoms & Molecules -
	Electron arrangement determines the chemical properties of an atom
	✓ atom has # of electron shells needed accommodate its number of electrons
	 atom with 6 electrons (C) has 2 shells
	 2 electrons in innermost shell
	 4 electrons in outermost shell
	 atom with 11 electrons (Na) has 3
	 2 electrons in innermost shell
	 8 electrons in second shell
_	 1 electron in outermost shell
	Figure 2.11 Electron orbitals ((Biology, 6th Ed., Campbell & Reece)
60 🗖	
	Electron arrangement determines the chemical properties of an atom
	✓ Energy
	- required to keep electrons in their orbits
	electrons have potential energy of position
	 more potential energy in outermost shells than in innermost shells
	»
	»
	"
61 🗷	Figure 2.9 Energy levels of an atom's electrons (Biology, 6th Ed., Campbell & Reece)
62 🗖	Web/CD Activity 2C:
	Electron Arrangement
63 🗖	Atoms & Molecules -
	Electron arrangement determines the chemical properties of an atom
	✓ number of electrons in outermost shell
	 determines chemical properties of element
	 partially full outer shells = reactive
	 full outer shells = unreactive (inert)
64 🗖	Atoms & Molecules - Electron arrangement determines the chemical properties of an atom
	✓ example

hydrogen (H) is highly reactiveone shell, only one electrons

11

	_
65 🗷	
66	Atoms & Molecules - Electron arrangement determines the chemical properties of an atom
	✓ example
	helium (He) is highly unreactive (inert)
	one shell, two electrons
	<i>,</i> =
	_
67 조	
_	Atoms & Molecules -
	Electron arrangement determines the chemical properties of an atom
	✔ How does a chemical reaction enable an atom to fill its outer electron shell?
	 2 atoms w/incomplete outer shells react
	 each atom gives up or acquires electrons
-	 results in atoms being held together by chemical bonds
	Figure 2.10 Electron configurations of the first 18 elements (<i>Biology</i> , 6th Ed., Campbell & Reece)
70	Web/CD Activity 2D:
_	Build an Atom
71 🗖	Atoms & Molecules - Chemical bonds
	✓ strong chemical bonds
	– ionic bonds
	– covalent bonds
	 nonpolar covalent bonds
	polar covalent bonds
	✓ weak chemical bonds
	- hydrogen bonds
72	Atoms & Molecules - Chemical bonds
	✓ strong chemical bonds
	-ionic bonds
	– covalent bonds
	nonpolar covalent bonds

	polar covalent bonds
	✓ weak chemical bonds
	– hydrogen bonds
73 🗖	Atoms & Molecules -
	Ionic bonds are attractions between ions of opposite charge
	✓ electron transfer between 2 atoms moves 1 unit of negative charge from one atom to other
	– original atom now has +1
	- recipient atom now has charge of -1
	•
	•
74	Atomo O Malora Lor
/4	Atoms & Molecules - Ionic bonds are attractions between ions of opposite charge
	√ions
	atoms in which number of electrons does not equal number of protons
	carry a net electrical charge (+ or -)
	- types of ions
	• cations
	• anions
75 🗖	Atoms & Molecules -
	Ionic bonds are attractions between ions of opposite charge
	✓ cation
	atom with net positive charge (+)
	•
	-
	- example:
	 sodium (Na) atom losses an electron, becomes sodium ion, or cation (Na+), with charge of +1
	Charge of +1
76 🗷	
77 🗖	Atoms & Molecules -
	Ionic bonds are attractions between ions of opposite charge
	✓ Anion
	atom with net negative charge (-)
	•
	-
	- example
	 chlorine (CI) atom, gains one electron, becomes chlorine ion, or anion (CI), with charge of -1

78 조	
79 🗖	Atoms & Molecules -
	lonic bonds are attractions between ions of opposite charge
	✓ two ions with opposite charge attract each other
	attraction called an ionic bond
	 resulting compound is electrically neutral
80	Atoms & Molecules -
	lonic bonds are attractions between ions of opposite charge ✓ionic bond
	- results from transfer of electron from one atom to another atom
	resulting in two ions
	– cation
	– anion– oppositely charged ions are attracted to each
	•
_	 resulting compound is electrically neutral
	Figure 2.14 Electron transfer and ionic bonding (<i>Biology</i> , 6th Ed., Campbell & Reece)
	Figure 2.15 A sodium chloride crystal (<i>Biology</i> , 6th Ed., Campbell & Reece)
83	Web/CD Activity 2G:
_	<u>Ionic Bonds</u>
84	Atoms & Molecules - Chemical bonds
	✓strong chemical bonds
	– ionic bonds
	-covalent bonds
	nonpolar covalent bondspolar covalent bonds
	✓ weak chemical bonds
	hydrogen bonds
85 🗖	Atoms & Molecules -
	Covalent bonds, the sharing of electrons, joins atoms into molecules
	✓ covalent bond
	 occurs when two atoms share one or more pairs of outer shell electrons
	 results in both atoms having a full outer electron shell
	_
	_
86 🗖	Atoms & Molecules -
	Covalent bonds, the sharing of electrons, joins atoms into molecules
	✓ why is a covalent bond so stable?
	-

- resulting molecule (compound)
 - has no net electrical charge
 - outer shells are full
 - · no free electrons to form bonds
- 87 Figure 2.12 Covalent bonding in four molecules (*Biology*, 6th Ed., Campbell & Reece)
- 88 Atoms & Molecules -

Covalent bonds, the sharing of electrons, joins atoms into molecules

- ✓ More than one covalent bond can form between two atoms
 - single covalent bond
 - double covalent bond
 - triple covalent bond
- 89 Atoms & Molecules -

Covalent bonds, the sharing of electrons, joins atoms into molecules

✓ single covalent bond

- one pair of electrons shared by two atoms
- represented by
 - •
 - example, H H
- least strong of covalent bonds
- 90 🗷
- 91 🗖 Atoms & Molecules -

Covalent bonds, the sharing of electrons, joins atoms into molecules

√ double covalent bond

- two pairs of electrons shared by two atoms
 - · represented by
 - _
 - example, O=O
- stronger than single covalent bond
 - •
- 92 🗷
- 93 Atoms & Molecules -

Covalent bonds, the sharing of electrons, joins atoms into molecules

√ triple covalent bond

- three pairs of electrons shared by two atoms
 - represented by
 - •
 - example, N <u>=</u> N
- strongest covalent bonds
 - •

94 Web/CD Activity 2E:

Covalent Bonds

95 Atoms & Molecules -

Covalent bonds, the sharing of electrons, joins atoms into molecules

- ✓ covalent bond energy
 - forming bond requires input of energy
 - energy is stored in bond
 - breaking bond results in release of energy
 - released energy becomes available to do work

96 🗖

Atoms & Molecules -

Covalent bonds, polar versus non-polar

- ✓ Atoms in a covalently bonded molecule
 - in tug-of-war for shared electrons

√ electronegativity

- measure of attraction (affinity) for shared electrons in covalent bond
 - stronger electronegativity = stronger pull on shared electron

97 🗖 Atoms & Molecules -

Chemical bonds

- ✓ strong chemical bonds
 - ionic bonds
 - covalent bonds

nonpolar covalent bonds

- polar covalent bonds
- ✓ weak chemical bonds
 - hydrogen bonds

98 Atoms & Molecules -

Covalent bonds, polar versus non-polar

- ✓ Because of concept of electronegativity,
 - covalent bonds can be divided into two categories
 - · nonpolar covalent bonds
 - · polar covalent bonds
- 99 Atoms & Molecules -

Covalent bonds, polar versus non-polar

✓ nonpolar covalent bond

- covalent bond between atoms with similar electronegativity
- result, electrons are shared equally between two atoms
- examples
 - O₂
 - H₂
 - CH₄ (methane)

100 🗷 Figure 2.12 Covalent bonding in four molecules (Biology, 6th Ed., Campbell & Reece)

- 101 Atoms & Molecules Chemical bonds
 - √ strong chemical bonds
 - ionic bonds
 - covalent bonds
 - nonpolar covalent bonds
 - polar covalent bonds
 - ✓ weak chemical bonds
 - hydrogen bonds
- 102 Atoms & Molecules -

Covalent bonds, polar versus non-polar

- ✓ polar covalent bond
 - a covalent bond between atoms that differ in electronegativity
 - atom with greater electonegativity pulls shared electrons closer
 - results in bond has two dissimilar ends
 - "poles", with partial + and partial charges
 - resulting molecules are said to be "polar"
 - example = H_2 O
- 103 🗷 Figure 2.13 Polar covalent bonds in a water molecule (Biology, 6th Ed., Campbell & Reece)
- 104 ☐ Web/CD Activity 2F:

Nonpolar and Polar Molecules

- 105 Atoms & Molecules Chemical bonds
 - ✓ strong chemical bonds
 - ionic bonds
 - covalent bonds
 - nonpolar covalent bonds
 - · polar covalent bonds
 - ✓ weak chemical bonds

-hydrogen bonds

- 106 Atoms & Molecules Hydrogen bonds
 - √ hydrogen bonds
 - result when polar molecules interact with one another
 - partial charge of one molecule is attracted to the partial + charge of another molecule
 - in the case of water:
 - · oxygen is very electronegative
 - •
- 107 Figure 2.16 A hydrogen bond (Biology, 6th Ed., Campbell & Reece)

Web/CD Activity 2H:

<u>Hydrogen Bonds</u>

109 The End